Biodegradation of pesticide-contaminated wastewaters from a formulation plant employing a pilot scale biobed

In this work, a pilot biobed was built up to treat pesticide-contaminated wastewaters discharged from a formulation plant. The pre-treated wastewater was spiked with additional pesticides in order to simulate a scenario of higher contamination: glyphosate, atrazine, imidacloprid, prometryn and carbe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-02, Vol.807 (Pt 1), p.150758-150758, Article 150758
Hauptverfasser: Lescano, Maia, Fussoni, Nerina, Vidal, Eduardo, Zalazar, Cristina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, a pilot biobed was built up to treat pesticide-contaminated wastewaters discharged from a formulation plant. The pre-treated wastewater was spiked with additional pesticides in order to simulate a scenario of higher contamination: glyphosate, atrazine, imidacloprid, prometryn and carbendazim were added to reach a final Total Organic Carbon (TOC) concentration of 70 mg L−1. An Intermediate Bulk Container (IBC) was filled with a biomixture of soil and foxtail millet stubble (50:50% v v−1), and 200 l of the wastewater was added to the system recycling tank. The recirculation to the IBC was established for 12 h. After that (Day 0), the recirculation was turned on during the assay only to maintain the moisture for 180 days. Biomixture and wastewater samples were taken periodically to analyse pesticides and phytotoxicity in both matrices. In addition, hydrolytic and phenoloxidase activities, total bacteria and yeast and fungi communities were determined in the biomixture. The designed pilot scale biobed allowed to treat wastewaters with high concentration of pesticides reaching a complete removal of glyphosate, AMPA, atrazine, carbendazim and prometryn at 180 days. A good degradation percentage of the recalcitrant imidacloprid was achieved (60%) and the biomixture showed enough biological activity to continue treating additional wastewater. The root elongation index from the germination test showed low toxicity on day 180 both in biomixture and wastewater. The millet stubble resulted an appropriate lignocellulosic material to be used in biobeds to treat a wide variety of pesticides. The application of the seed germination test proved to be a low cost and simple tool to determine the end point of the process. [Display omitted] •A pilot biobed to treat wastewaters from pesticides formulation plants is presented.•Total removal of atrazine, carbendazim, prometryn, glyphosate and AMPA is obtained.•Good degradation percentage of the recalcitrant imidacloprid is achieved.•At the end, root elongation index from the germination test showed low toxicity.•Biomixture showed enough biological activity to treat additional wastewater.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2021.150758