Polarization measurements of deep- to extreme-ultraviolet high harmonics generated in liquid flat sheets

Laboratory-based coherent light sources enable a wide range of applications to investigate dynamical processes in matter. High-harmonic generation (HHG) from liquid samples is a recently discovered coherent source of extreme-ultraviolet (XUV) radiation potentially capable of achieving few-femtosecon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2021-09, Vol.29 (19), p.30799-30808
Hauptverfasser: Svoboda, Vít, Yin, Zhong, Luu, Tran Trung, Wörner, Hans Jakob
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Laboratory-based coherent light sources enable a wide range of applications to investigate dynamical processes in matter. High-harmonic generation (HHG) from liquid samples is a recently discovered coherent source of extreme-ultraviolet (XUV) radiation potentially capable of achieving few-femtosecond to attosecond pulse durations. However, the polarization state of this light source has so far remained unknown. In this work, we characterize the degree of polarization of both low- and high-order harmonics generated from liquid samples using linearly polarized 400 nm and 800 nm drivers. We find a remarkably high degree of linear polarization of harmonics ranging all the way from the deep-ultraviolet (160 nm) across the vacuum-ultraviolet into the XUV domain (73 nm). These results establish high-harmonic generation in liquids as a promising alternative to conventional sources of XUV radiation, combining the benefits of high target densities comparable to solids with a continuous sample renewal that avoids the limitations imposed by laser-induced damage.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.433849