Photonic topology optimization with semiconductor-foundry design-rule constraints
We present a unified density-based topology-optimization framework that yields integrated photonic designs optimized for manufacturing constraints including all those of commercial semiconductor foundries. We introduce a new method to impose minimum-area and minimum-enclosed-area constraints, and si...
Gespeichert in:
Veröffentlicht in: | Optics express 2021-07, Vol.29 (15), p.23916-23938 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a unified density-based topology-optimization framework that yields integrated photonic designs optimized for manufacturing constraints including all those of commercial semiconductor foundries. We introduce a new method to impose minimum-area and minimum-enclosed-area constraints, and simultaneously adapt previous techniques for minimum linewidth, linespacing, and curvature, all of which are implemented without any additional re-parameterizations. Furthermore, we show how differentiable morphological transforms can be used to produce devices that are robust to over/under-etching while also satisfying manufacturing constraints. We demonstrate our methodology by designing three broadband silicon-photonics devices for nine different foundry-constraint combinations. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.431188 |