High-speed temporal and spatial beam-shaping combining active and passive elements
Temporal and spatial shaping of laser beams is common in laser micromachining applications to improve quality and throughput. However, dynamic beam shaping (DBS) of ultrashort, high-power pulses at rates of hundreds of kHz has been challenging. Achieving this allows for full synchronization of the b...
Gespeichert in:
Veröffentlicht in: | Optics express 2021-09, Vol.29 (20), p.31229-31239 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Temporal and spatial shaping of laser beams is common in laser micromachining applications to improve quality and throughput. However, dynamic beam shaping (DBS) of ultrashort, high-power pulses at rates of hundreds of kHz has been challenging. Achieving this allows for full synchronization of the beam shape with high repetition rates, high-power lasers with zero delay time. Such speeds must manipulate the beam shape at a rate that matches the nanosecond to microsecond process dynamics present in laser ablation. In this work, we present a novel design capable of alternating spatial and temporal beam shapes at repetition rates up to 330 kHz for conventional spatial profiles and temporal shaping at nanosecond timescales. Our method utilizes a unique multi-aperture diffractive optical element combined with two acousto-optical deflectors. These high damage threshold elements allow the proposed method to be easily adapted for high power ultrashort lasers at various wavelengths. Moreover, due to the combination of the elements mentioned, no realignment or mechanical movements are required, allowing for high consistency of quality for high throughput applications. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.434772 |