Hybrid polarization grating for mode detection of vector beams
A hybrid polarization grating that can spatially separate orthogonal states of a vector beam with the same polarization topological charge is presented. The hybrid polarization grating is assembled using a fork-shaped polarization grating and a quarter-wave polarization grating and acts as a common...
Gespeichert in:
Veröffentlicht in: | Optics express 2021-08, Vol.29 (17), p.27071-27083 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A hybrid polarization grating that can spatially separate orthogonal states of a vector beam with the same polarization topological charge is presented. The hybrid polarization grating is assembled using a fork-shaped polarization grating and a quarter-wave polarization grating and acts as a common pass interferometer for right- and left-circular polarization components of incident vector beams. The hybrid polarization grating can separate two vector beam states that have a 90 ° relative polarization azimuth angle difference. The number of detectable vector beams can be increased by replacing the hybrid polarization grating with a crossed-hybrid polarization grating. Device feasibility was demonstrated experimentally using hybrid polarization grating and crossed-hybrid polarization grating fabricated using the photoalignment method for photoreactive liquid crystals. This approach has the potential to demultiplex several vector beams stably and simultaneously using a compact optical system and should be applicable to vector beam division multiplexing and other applications requiring vector beam detection. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.433998 |