High‐throughput screening for distinguishing nitrilases from nitrile hydratases in Aspergillus and application of a Box–Behnken design for the optimization of nitrilase

Nitrilases and nitrile hydratases/amidases hydrolyze nitriles into carboxylic acids and/or amides, which are used in industrial chemical processes. In the present study, 26 microorganisms, including yeasts and filamentous fungi, in a minimum solid mineral medium supplemented with glucose and phenyla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and applied biochemistry 2022-10, Vol.69 (5), p.2081-2090
Hauptverfasser: Santos, Edvan do Carmo, Menezes, Luiz Henrique Sales, Santos, Carolline Silva, Santana, Paulo Vinicius Bispo, Soares, Glêydison Amarante, Tavares, Iasnaia Maria de Carvalho, Freitas, Janaina de Silva, Souza‐Motta, Cristina Maria, Bezerra, José Luiz, da Costa, Andréa Miura, Uetanabaro, Ana Paula Trovatti, Porto, André Luiz Meleiro, Franco, Marcelo, Oliveira, Julieta Rangel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitrilases and nitrile hydratases/amidases hydrolyze nitriles into carboxylic acids and/or amides, which are used in industrial chemical processes. In the present study, 26 microorganisms, including yeasts and filamentous fungi, in a minimum solid mineral medium supplemented with glucose and phenylacetonitrile were screened to evaluate their biocatalytic potential. Of these microorganisms, five fungi of the genus Aspergillus were selected and subjected to colorimetry studies to evaluate the production and distinction of nitrilase and nitrile hydratase/amidase enzymes. Aspergillus parasiticus Speare 7967 and A. niger Tiegh. 8285 produced nitrilases and nitrile hydratase, respectively. Nitrilase optimization was performed using a Box–Behnken design (BBD) and fungus A. parasiticus Speare 7967 with phenylacetonitrile volume (μl), pH, and carbohydrate source (starch:glucose; g/g) as independent variables and nitrilase activity (U ml–1) as dependent variable. Maximum activity (2.97 × 10–3 U ml–1) was obtained at pH 5.5, 80 μl of phenylacetonitrile, and 15 g of glucose. A. parasiticus Speare 7967 showed promise in the biotransformation of nitriles to carboxylic acids. Nitrilases and nitrile hydratases/amidases hydrolyze nitriles into carboxylic acids and/or amides, which are used in industrial chemical processes.
ISSN:0885-4513
1470-8744
DOI:10.1002/bab.2269