Implementation of a 3 × 3 directionally-unbiased linear optical multiport

Linear optical multiports are widely used in photonic quantum information processing. Naturally, these devices are directionally-biased since photons always propagate from the input ports toward the output ports. Recently, the concept of directionally-unbiased linear optical multiports was proposed....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2021-08, Vol.29 (18), p.29527-29540
Hauptverfasser: Kim, Ilhwan, Lee, Donghwa, Hong, Seongjin, Cho, Young-Wook, Jo Lee, Kwang, Kim, Yong-Su, Lim, Hyang-Tag
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Linear optical multiports are widely used in photonic quantum information processing. Naturally, these devices are directionally-biased since photons always propagate from the input ports toward the output ports. Recently, the concept of directionally-unbiased linear optical multiports was proposed. These directionally-unbiased multiports allow photons to propagate along a reverse direction, which can greatly reduce the number of required linear optical elements for complicated linear optical quantum networks. Here, we report an experimental demonstration of a 3 × 3 directionally-unbiased linear optical fiber multiport using an optical tritter and mirrors. Compared to the previous demonstration using bulk optical elements which works only with light sources with a long coherence length, our experimental directionally-unbiased 3 × 3 optical multiport does not require a long coherence length since it provides negligible optical path length differences among all possible optical trajectories. It can be a useful building block for implementing large-scale quantum walks on complex graph networks.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.436075