Unsupervised single-image dehazing using the multiple-scattering model

An unsupervised single-image dehazing method using a multiple scattering model is proposed. The method uses an undegraded atmospheric multiple scattering model and unsupervised learning to implement dehazing on single real-world image. The atmospheric multiple scattering model can avoid the influenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2021-09, Vol.60 (26), p.7858-7868
Hauptverfasser: An, Shunmin, Huang, Xixia, Wang, Linling, Zheng, Zhangjing, Wang, Le
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An unsupervised single-image dehazing method using a multiple scattering model is proposed. The method uses an undegraded atmospheric multiple scattering model and unsupervised learning to implement dehazing on single real-world image. The atmospheric multiple scattering model can avoid the influence of multiple scattering on the image and the unsupervised neural network can avoid the intensive operation on the data set. In this method, three unsupervised learning branches and a blur kernel estimation module estimate the scene radiation layer, transmission layer, atmospheric light layer, and blur kernel layer, respectively. In addition, the unsupervised loss function is constructed by prior knowledge to constrain the unsupervised branches. Finally, the output of the three unsupervised branches and the blur kernel estimation module synthesizes the haze image in a self-supervised way. A large number of experiments show that the proposed method has good performance in image dehazing compared with the six most advanced dehazing methods.
ISSN:1559-128X
2155-3165
1539-4522
DOI:10.1364/AO.426651