Low-frequency vibrational spectroscopy: a new tool for revealing crystalline magnetic structures in iron phosphate crystals
In this report, the strong-dependence of low-frequency (terahertz) vibrational dynamics on weak and long-range forces in crystals is leveraged to determine the bulk magnetic configuration of iron phosphate - a promising material for cathodes in lithium ion batteries. We demonstrate that terahertz ti...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2021-10, Vol.23 (39), p.22241-22245 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this report, the strong-dependence of low-frequency (terahertz) vibrational dynamics on weak and long-range forces in crystals is leveraged to determine the bulk magnetic configuration of iron phosphate - a promising material for cathodes in lithium ion batteries. We demonstrate that terahertz time-domain spectroscopy - coupled with quantum mechanical simulations - can discern between various spin configurations in FePO
4
. Furthermore, the results of this work unambiguously show that the well-accepted space group symmetry for FePO
4
is incorrect, and the low-frequency spectroscopic measurements provide a clearer picture of the correct structure over the gold-standard of X-ray diffraction. This work opens the door for characterizing, predicting, and interpreting crystalline magnetic ordering using low-frequency vibrational spectroscopy.
In this report, the strong-dependence of low-frequency (terahertz) vibrational dynamics on weak and long-range forces in crystals is leveraged to determine the bulk magnetic configuration of iron phosphate - a promising material for cathodes in lithium ion batteries. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d1cp03424c |