Thickness-dependent anisotropic transport of phonons and charges in few-layered PdSe2

So far, layered PdSe2 has attracted much attention due to its completely tunable band-gap with varying layer numbers, yet the thickness-dependent transporting properties have been rarely studied. We have systematically studied the electronic structures, phonon and charge transport properties, and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2021-09, Vol.23 (34), p.18869-18884
Hauptverfasser: Kai-Cheng, Zhang, Lin-Yuan, Cheng, Chen, Shen, Yong-Feng, Li, Liu, Yong, Zhu, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:So far, layered PdSe2 has attracted much attention due to its completely tunable band-gap with varying layer numbers, yet the thickness-dependent transporting properties have been rarely studied. We have systematically studied the electronic structures, phonon and charge transport properties, and thermoelectric properties of few-layered (from 1L to 4L) and bulk PdSe2 by first-principles calculations and Boltzmann transport theory. As the thickness increases, the energy levels of band edges relative to 4s of selenium move oppositely due to their different bonding states, leading to the power-law decrease of the band-gap. Meanwhile, the electron effective mass decreases rapidly while the hole effective mass increases significantly compared with those unperturbed. Calculations on elastic constants reveal that both bulk and few-layered PdSe2 are mechanically stable, and the bulk is ductile with a Poisson's ratio of 0.27. The shifts of Raman active modes with respect to the thickness as well as their Gruneisen parameters are analyzed and the underlying physics is discussed. At room temperature, the thermal conductivities of the bulk are 7.7, 10.1 and 0.9 W m−1 K−1 along the a, b and c axes, respectively. It is found that the low-frequency modes (
ISSN:1463-9076
1463-9084
DOI:10.1039/d1cp00992c