Effects of radiation dose and nitrogen purge on collagen scaffold properties

Sterilization of medical devices is commonly performed using radiation methods. However, collagen materials can be damaged when using standard radiation doses (25 kGy). Small increases of radiation dose can allow for increases in the acceptable initial bioburden load of aseptically manufactured devi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomaterials applications 2022-01, Vol.36 (6), p.1011-1018
Hauptverfasser: Sant, Nicholas J, Proffen, Benedikt L, Murray, Martha M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sterilization of medical devices is commonly performed using radiation methods. However, collagen materials can be damaged when using standard radiation doses (25 kGy). Small increases of radiation dose can allow for increases in the acceptable initial bioburden load of aseptically manufactured devices while maintaining required sterility assurance levels, which is often critical in early stage translational settings. In this study, we hypothesized that small increases in radiation dose from 15 to 20 kGy would result in significant changes to several key characteristics of collagen scaffolds. Scaffolds were manufactured by lyophilizing the pepsin digest of dense bovine connective tissue in cylindrical molds and were irradiated at either 0, 15, 17.5, or 20 kGy with an additional group packaged in nitrogen and irradiated at 17.5 kGy. Groups were evaluated for changes to the soluble collagen and glycosaminoglycan mass fractions, protein banding patterns in electrophoresis, a collagen fragmentation assay, and resistance to enzymatic degradation. All parameters were statistically analyzed using one-way analysis of variance with Tukey’s correction for multiple comparisons. The soluble collagen mass fraction was significantly decreased in the 20 kGy group; however, there was no significant effect of radiation dose or a nitrogen-rich environment on the other measured parameters, including protein banding patterns, fragmented collagen content, and resistance to enzymatic degradation. Statement of Clinical Significance: Collagen scaffolds have proven useful in clinical applications but can be damaged by standard radiation doses. Low-dose sterilization may be a viable alternative that minimally impacts key properties of these scaffolds.
ISSN:0885-3282
1530-8022
DOI:10.1177/08853282211047683