Flavonoid Monomers as Potent, Nontoxic, and Selective Modulators of the Breast Cancer Resistance Protein (ABCG2)
We synthesize various substituted triazole-containing flavonoids and identify potent, nontoxic, and highly selective BCRP inhibitors. Ac18Az8, Ac32Az19, and Ac36Az9 possess m-methoxycarbonylbenzyloxy substitution at C-3 of the flavone moiety and substituted triazole at C-4′ of the B-ring. They show...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2021-10, Vol.64 (19), p.14311-14331 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We synthesize various substituted triazole-containing flavonoids and identify potent, nontoxic, and highly selective BCRP inhibitors. Ac18Az8, Ac32Az19, and Ac36Az9 possess m-methoxycarbonylbenzyloxy substitution at C-3 of the flavone moiety and substituted triazole at C-4′ of the B-ring. They show low toxicity (IC50 toward L929 > 100 μM), potent BCRP-inhibitory activity (EC50 = 1–15 nM), and high BCRP selectivity (BCRP selectivity over MRP1 and P-gp > 67–714). They inhibit the efflux activity of BCRP, elevate the intracellular drug accumulation, and restore the drug sensitivity of BCRP-overexpressing cells. Like Ko143, Ac32Az19 remarkably exhibits a 100% 5D3 shift, indicating that it can bind and cause a conformational change of BCRP. Moreover, it significantly reduces the abundance of functional BCRP dimers/oligomers by half to retain more mitoxantrone in the BCRP-overexpressing cell line and that may account for its inhibitory activity. They are promising candidates to be developed into combination therapy to overcome MDR cancers with BCRP overexpression. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/acs.jmedchem.1c00779 |