Training Intensity, Not Duration, May Be Key to Upregulating Presynaptic Proteins of Calcium Dynamics and Calcium-Dependent Exocytosis in Fast- and Slow-Twitch Skeletal Muscles, in Addition to Maintaining Performance After Detraining

Neuromuscular adaptations are essential for improving athletic performance. However, little is known about the effect of different endurance training protocols and their subsequent detraining on the gene expression of critical factors for neuromuscular synaptic transmission. Therefore, this study in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular neurobiology 2021-12, Vol.58 (12), p.6670-6683
Hauptverfasser: Gorzi, Ali, Jafari, Fatemeh, Allahmoradi, Nasrin, Rahmani, Ahmad, Krause Neto, Walter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neuromuscular adaptations are essential for improving athletic performance. However, little is known about the effect of different endurance training protocols and their subsequent detraining on the gene expression of critical factors for neuromuscular synaptic transmission. Therefore, this study investigated the effects of endurance training (high-intensity interval training [HIIT], continuous [cEND], mixed interval [Mix], and all protocols combined [Comb]) and detraining on performance and gene expression (GE) of the alpha-1a, synaptotagmin II (Syt-II), synaptobrevin II (Vamp2), and acetylcholinesterase (AChE) in the gastrocnemius and soleus of Wistar rats. Eighty rodents were randomly divided into control, HIIT, cEND, Mix, Comb, and detraining groups. The rodents trained for 6 weeks (5 × /week), followed by 2 weeks of detraining. Performance improved in all training groups and decreased following detraining ( p  
ISSN:0893-7648
1559-1182
1559-1182
DOI:10.1007/s12035-021-02576-7