Coherent Control and Spectroscopy of a Semiconductor Quantum Dot Wigner Molecule

Semiconductor quantum dots containing more than one electron have found wide application in qubits, where they enable readout and enhance polarizability. However, coherent control in such dots has typically been restricted to only the lowest two levels, and such control in the strongly interacting r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-09, Vol.127 (12), p.127701-127701, Article 127701
Hauptverfasser: Corrigan, J., Dodson, J. P., Ercan, H. Ekmel, Abadillo-Uriel, J. C., Thorgrimsson, Brandur, Knapp, T. J., Holman, Nathan, McJunkin, Thomas, Neyens, Samuel F., MacQuarrie, E. R., Foote, Ryan H., Edge, L. F., Friesen, Mark, Coppersmith, S. N., Eriksson, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semiconductor quantum dots containing more than one electron have found wide application in qubits, where they enable readout and enhance polarizability. However, coherent control in such dots has typically been restricted to only the lowest two levels, and such control in the strongly interacting regime has not been realized. Here we report quantum control of eight different transitions in a silicon-based quantum dot. We use qubit readout to perform spectroscopy, revealing a dense set of energy levels with characteristic spacing far smaller than the single-particle energy. By comparing with full configuration interaction calculations, we argue that the dense set of levels arises from Wigner-molecule physics.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.127.127701