Coronary vasodilation mediated by T cells expressing choline acetyltransferase

This study shows ChAT-expressing T cells can induce vasodilation of the blood vessel in the coronary circulation and that this effect relies on a direct interaction between T cells and the coronary vascular endothelium. The study establishes a potential immunomodulatory role for T cells in the coron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Heart and circulatory physiology 2021-11, Vol.321 (5), p.H933-H939
Hauptverfasser: Chester, Adrian H., McCormack, Ann, Miller, Edmund J., Ahmed, Mohamed N., Yacoub, Magdi H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study shows ChAT-expressing T cells can induce vasodilation of the blood vessel in the coronary circulation and that this effect relies on a direct interaction between T cells and the coronary vascular endothelium. The study establishes a potential immunomodulatory role for T cells in the coronary circulation. The present findings offer an additional possibility that a deficiency of ChAT-expressing T cells could contribute to reduced coronary blood flow and ischemic events in the myocardium. CD4 + T cells expressing choline acetyltransferase (ChAT) have recently been shown to cause a drop in systemic blood pressure when infused into mice. The aim of this study was to determine if ChAT-expressing T cells could regulate coronary vascular reactivity. Preconstricted segments of epicardial and intramyocardial porcine coronary arteries relaxed in response to Jurkat T cells (JT) that overexpressed ChAT (JT ChAT cells). The efficacy of the JT ChAT cells was similar in epicardial and intramyocardial vessels with a maximum dilator response to 3 × 10 5 cells/mL of 38.0 ± 6.7% and 38.7 ± 7.25%, respectively. In contrast, nontransfected JT cells elicited a weak dilator response, followed by a weak contraction. The response of JT ChAT cells was dependent on the presence of the endothelial cells. In addition, the response could be significantly reduced by N ω -nitro-l-arginine methyl ester (l-NAME) and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) in the presence of indomethacin. JT ChAT cells, but not JT cells, increased the expression of phosphorylated endothelial nitric oxide synthase (eNOS). JT ChAT cells contained significantly greater levels of acetylcholine compared with JT cells; however, the nonselective muscarinic antagonist atropine and the M 1 receptor antagonist pirenzepine both failed to block the dilator effect of JT ChAT cells. Exogenously added acetylcholine induced only a weak relaxation (∼10%) at low concentrations, which became a contractile response at higher concentrations. These data illustrate the capacity for cells that express ChAT to regulate coronary vascular reactivity, via mechanisms that are dependent on interaction with the endothelium and in part mediated by the release of nitric oxide. NEW & NOTEWORTHY This study shows ChAT-expressing T cells can induce vasodilation of the blood vessel in the coronary circulation and that this effect relies on a direct interaction between T cells and the coronary vascular endothelium. The study
ISSN:0363-6135
1522-1539
DOI:10.1152/ajpheart.00694.2020