On the handling of continuous-valued attributes in decision tree generation

We present a result applicable to classification learning algorithms that generate decision trees or rules using the information entropy minimization heuristic for discretizing continuous-valued attributes. The result serves to give a better understanding of the entropy measure, to point out that th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 1992-01, Vol.8 (1), p.87-102
Hauptverfasser: Fayyad, Usama M., Irani, Keki B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a result applicable to classification learning algorithms that generate decision trees or rules using the information entropy minimization heuristic for discretizing continuous-valued attributes. The result serves to give a better understanding of the entropy measure, to point out that the behavior of the information entropy heuristic possesses desirable properties that justify its usage in a formal sense, and to improve the efficiency of evaluating continuous-valued attributes for cut value selection. Along with the formal proof, we present empirical results that demonstrate the theoretically expected reduction in evaluation effort for training data sets from real-world domains.
ISSN:0885-6125
1573-0565
DOI:10.1007/BF00994007