On the measurement of local strain and temperature during the formation of adiabatic shear bands
A series of experiments was performed to study the process of adiabatic shear band initiation and formation in steels. The steels include a low carbon cold-rolled steel and three martensitic steels (HY-100 and two tempers of AISI 4340 VAR steel of varying hardness). In each case the specimens are ma...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 1992-10, Vol.157 (2), p.195-210 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A series of experiments was performed to study the process of adiabatic shear band initiation and formation in steels. The steels include a low carbon cold-rolled steel and three martensitic steels (HY-100 and two tempers of AISI 4340 VAR steel of varying hardness). In each case the specimens are machined as thin-walled tubes that are deformed dynamically in a torsional Kolsky bar (torsional split Hopkinson bar). Shear band initiation and formation are observed by ultrahigh-speed photography of a fine grid pattern deposited on the specimen's surface. It is shown that the critical strain for shear band initiation depends on the magnitude of a preexisting defect, in accordance with the predictions of Molinari and Clifton,
J. Appl. Mech., 54 (1991) 806–812. Ultrahigh-speed photographs of the grid pattern show that local strains of 100–1000% may be attained and that the local strain rates reach 10
5 s
−1. In addition, the local temperature in the shear band is measured by employing an array of small high-speed infrared detectors that provide a plot of temperature as a function of time and position. Within the shear band region, temperatures of 600 °C have been measured. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/0921-5093(92)90026-W |