UPLC-ESI-MS/MS profiling of the underground parts of common Iris species in relation to their anti-virulence activities against Staphylococcusaureus
The use of plant extracts and their phytochemicals as candidates for targeting the microbial resistance inhibition is increasingly focused in last decades. In Mongolian traditional medicine, Irises were long used for the treatment of bacterial infections. Irises have been used since the Ancient Egyp...
Gespeichert in:
Veröffentlicht in: | Journal of ethnopharmacology 2022-01, Vol.282, p.114658-114658, Article 114658 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of plant extracts and their phytochemicals as candidates for targeting the microbial resistance inhibition is increasingly focused in last decades. In Mongolian traditional medicine, Irises were long used for the treatment of bacterial infections. Irises have been used since the Ancient Egyptians.
Chemical composition and virulence inhibition potential of both polar (PF) and non-polar fractions (NPF) of three common Iris species (I. confusa, I. pseudacorus and I. germanica) were explored.
Secondary metabolites profiling was characterized by the UPLC-HRMS/MS technique. Multi-variate data analysis was performed using Metaboanalyst 3.0. Anti-virulence inhibitory activity was evaluated via anti-haemolytic assay and Quantitative biofilm inhibition assay.
I. pseudacorus PF exhibited the most potent effect against S. aureus haemolytic activity. All the tested fractions from all species, except I. pseudacorus NPF, have no significant inhibition on the biofilm formation of methicillin resistant and sensitive (MRSA and MSSA) S. aureus. I. pseudacorus NPF showed potent biofilm inhibitory potential of 71.4 and 85.8% against biofilm formation of MRSA and MSSA, respectively. Metabolite profiling of the investigated species revealed ninety and forty-five metabolites detected in the PFs and NPFs, respectively. Nigricin-type, tectorigenin-type isoflavonids and xanthones allowed the discrimination of I. pseudacorus PF from the other species, highlighting the importance of those metabolites in exerting its promising activity. On the other hand, triterpene acids, iridals, triacylglycerols and ceramides represented the metabolites detected in highest abundance in I. pseudacorus NPF.
This is the sole map represents the secondary metabolites profiling of the PFs and NPFs of common Iris species correlating them with the potent explored Staphylococcus aureus anti-virulence activity.
[Display omitted] |
---|---|
ISSN: | 0378-8741 1872-7573 |
DOI: | 10.1016/j.jep.2021.114658 |