The Role of Fluorine-Substituted Positions on the Phase Transition in Organic–Inorganic Hybrid Perovskite Compounds
Although research on organic–inorganic hybrid perovskites (OIHPs) has grown exponentially in the past two decades, the high phase transition temperature of OIHP materials is still one of the insurmountable difficulties. Herein, a series of A2BX4 type OIHP materials [(2,n-DFBA)2PbCl4] (n = 3, for 1;...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2021-10, Vol.60 (19), p.14706-14712 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although research on organic–inorganic hybrid perovskites (OIHPs) has grown exponentially in the past two decades, the high phase transition temperature of OIHP materials is still one of the insurmountable difficulties. Herein, a series of A2BX4 type OIHP materials [(2,n-DFBA)2PbCl4] (n = 3, for 1; n = 4, for 2; n = 5, for 3; n = 6, for 4) have been prepared by reactions of double-substituted difluorobenzylamine (difluorobenzylamine = DFBA) with lead chloride in concentrated HCl aqueous solution. It was found the OIHP compounds 1–3 proceed a switchable phase transition with phase transition temperatures (T c) at 449 K (1), 462 K (2) and 500 K (3), higher than that of the parent compound [(BA)2PbCl4] (BA = benzylammonium) at 438 K, but compound 4 exhibits no phase transition. A crystal structure analysis elucidated that the organic template ligands DFBA lead in the inorganic part in compounds 1–3 to a two-dimensional (2D) perovskite structure, while that in compound 4 leads to a one-dimensional (1D) chain structure. The different double-substituted positions of fluorine atoms on benzylamine have important influences on the phase transition in compounds 1–4. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.1c01816 |