Threshold Dynamics of an SEIS Epidemic Model with Nonlinear Incidence Rates

In this paper, we consider an SEIS epidemic model with infectious force in latent and infected period, which incorporates by nonlinear incidence rates. The local stability of the equilibria is discussed. By means of Lyapunov functionals and LaSalle’s invariance principle, we proved the global asympt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations and dynamical systems 2024-04, Vol.32 (2), p.505-518
Hauptverfasser: Naim, Mouhcine, Lahmidi, Fouad, Namir, Abdelwahed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider an SEIS epidemic model with infectious force in latent and infected period, which incorporates by nonlinear incidence rates. The local stability of the equilibria is discussed. By means of Lyapunov functionals and LaSalle’s invariance principle, we proved the global asymptotic stability of the disease-free equilibrium and the endemic equilibrium. An application is given and numerical simulation results based on real data of COVID-19 in Morocco are performed to justify theoretical findings.
ISSN:0971-3514
0974-6870
DOI:10.1007/s12591-021-00581-9