Compound Tongluo Decoction inhibits endoplasmic reticulum stress-induced ferroptosis and promoted angiogenesis by activating the Sonic Hedgehog pathway in cerebral infarction

Cerebral infarction is one of the most common types of cerebrovascular diseases that threaten people's health. Compound Tongluo Decoction (CTLD), a traditional Chinese medicine formula, has various pharmacological activities, including the alleviation of cerebral infarction symptoms. Aim of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ethnopharmacology 2022-01, Vol.283, p.114634-114634, Article 114634
Hauptverfasser: Hui, Zhen, Wang, Sulei, Li, Jianxiang, Wang, Jingqing, Zhang, Zhennian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cerebral infarction is one of the most common types of cerebrovascular diseases that threaten people's health. Compound Tongluo Decoction (CTLD), a traditional Chinese medicine formula, has various pharmacological activities, including the alleviation of cerebral infarction symptoms. Aim of the study: This study aims to explore the potential mechanism by which CTLD alleviates cerebral infarction. Middle cerebral artery occlusion (MCAO) rat model and oxygen-glucose deprivation and reperfusion (OGD/R) cell model were established for research. The expression of proteins related to endoplasmic reticulum (ER) stress, ferroptosis, Sonic Hedgehog (SHH) pathway and angiogenesis was analyzed by Western blot analysis. The expression of CD31 was detected by immunofluorescence to investigate angiogenesis. In addition, the expression of GRP78 and XBP-1 in brain tissues was investigated by immunohistochemistry. With the application of Prussian blue staining, iron deposition in brain tissue was detected. The levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD) were detected using ELISA kits. The angiogenesis was analyzed by tube formation assay. The results presented in this research showed that CTLD and 4-phenyl butyric acid (4-PBA; the inhibitor of ER stress) could alleviate cerebral infarction. Mechanistically, CTLD and 4-PBA rescued ER stress and ferroptosis, but promoted SHH signaling in rats with cerebral infarction. In addition, cerebral infarction exhibited a high level of angiogenesis, which was aggravated by CTLD but suppressed by 4-PBA. Furthermore, CTLD inhibited ER stress and ferroptosis, but promoted SHH signaling and angiogenesis in OGD/R-induced PC12 cells, which was partly abolished by SANT-1, an antagonist of SHH signaling. In conclusion, this study revealed that CTLD might inhibit ferroptosis induced by endoplasmic reticulum stress and promote angiogenesis by activating the Sonic Hedgehog pathway in rats with cerebral infarction. [Display omitted]
ISSN:0378-8741
1872-7573
DOI:10.1016/j.jep.2021.114634