Redesigning Kidney Disease Care to Improve Value Delivery
This article describes the articulation, development, and deployment of a machine learning (ML) model-driven value solution for chronic kidney disease (CKD) in a health system. The ML model activated an electronic medical record (EMR) trigger that alerted CKD patients to seek primary care. Simultane...
Gespeichert in:
Veröffentlicht in: | Population health management 2022-10, Vol.25 (5), p.592-600 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article describes the articulation, development, and deployment of a machine learning (ML) model-driven value solution for chronic kidney disease (CKD) in a health system. The ML model activated an electronic medical record (EMR) trigger that alerted CKD patients to seek primary care. Simultaneously, primary care physicians (PCPs) received an alert that a CKD patient needed an appointment. Using structured checklists, PCPs addressed and controlled comorbid conditions, reconciled drug dosing and choice to CKD stage, and ordered prespecified laboratory and imaging tests pertinent to CKD. After completion of checklist prescribed tasks, PCPs referred patients to nephrology. CKD patients had multiple comorbidities and ML recognition of CKD provided a facile insight into comorbid burden. Operational results of this program have exceeded expectations and the program is being expanded to the entire health system. This paradigm of ML-driven, checklist-enabled care can be used agnostic of EMR platform to deliver value in CKD through structured engagement of complexity in health systems. |
---|---|
ISSN: | 1942-7891 1942-7905 |
DOI: | 10.1089/pop.2021.0112 |