Strong Structural Modification of Gd to Co3O4 for Catalyzing N2O Decomposition under Simulated Real Tail Gases

In this paper, Gd-promoted Co3O4 catalysts were prepared via a facile coprecipitation method for low-temperature catalytic N2O decomposition. Due to the addition of Gd, the crystallite size of Co3O4 in the Gd0.06Co catalyst surprisingly decreased to 4.9 nm, which is much smaller than most additive-m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2021-10, Vol.55 (19), p.13335-13344
Hauptverfasser: Xiong, Ying, Zhao, Yumei, Qi, Xingkun, Qi, Jiayi, Cui, Yuanyuan, Yu, Haibiao, Cao, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, Gd-promoted Co3O4 catalysts were prepared via a facile coprecipitation method for low-temperature catalytic N2O decomposition. Due to the addition of Gd, the crystallite size of Co3O4 in the Gd0.06Co catalyst surprisingly decreased to 4.9 nm, which is much smaller than most additive-modified Co3O4 catalysts. This huge change in the catalyst’s textural structure endows the Gd0.06Co catalyst with a large specific surface area, plentiful active sites, and a weak Co–O bond. Hence, Gd0.06Co exhibited superior activity for catalyzing 2000 ppmv N2O decomposition, and the temperature for the complete catalytic elimination of N2O was as low as 350 °C. Meanwhile, compared with pure Co3O4, E a decreased from 77.4 to 46.8 kJ·mol–1 and TOF of the reaction increased from 1.16 × 10–3 s–1 to 5.13 × 10–3 s–1 at 300 °C. Moreover, Gd0.06Co displayed a quite stable catalytic performance in the presence of 100 ppmv NO, 5 vol % O2, and 2 vol % H2O.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.1c05052