Soil carbon stock and stability under Eucalyptus-based silvopasture and other land-use systems in the Cerrado biodiversity hotspot
During the past few decades, commercial silvopastoral systems (SPS) with exotic Eucalyptus (hybrid) trees have become popular in the Brazilian Cerrado (savanna). With the increasing awareness about the role of carbon (C) storage in soils as a climate-change mitigation strategy and the relationship b...
Gespeichert in:
Veröffentlicht in: | Journal of environmental management 2021-12, Vol.299, p.113676-113676, Article 113676 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | During the past few decades, commercial silvopastoral systems (SPS) with exotic Eucalyptus (hybrid) trees have become popular in the Brazilian Cerrado (savanna). With the increasing awareness about the role of carbon (C) storage in soils as a climate-change mitigation strategy and the relationship between the nature of soil aggregates and the soil's carbon sequestration potential, it is important to understand the influence of such SPS systems on soil organic carbon (SOC) storage. We studied C content in three aggregate size classes in six land-use systems on Oxisols in Minas Gerais, Brazil. The systems were planted forest, native secondary forest, managed pasture, and three 8-year-old SPS, differing in their tree-planting configurations. Eucalyptus hybrid was the tree in SPS and planted forest treatments, and Urochloa decumbens was the grass in SPS and pasture treatments. From each treatment, replicated soil samples were collected from four depth-classes (0–10, 10–30, 30–60, and 60–100 cm), fractionated by wet sieving into the three aggregate-size classes, 2000 to 250 μm, 250 to 53 μm, and |
---|---|
ISSN: | 0301-4797 1095-8630 |
DOI: | 10.1016/j.jenvman.2021.113676 |