Determining tolerance levels for quality assurance of 3D printed bolus for modulated arc radiotherapy of the nose
Given the existing literature on the subject, there is obviously a need for specific advice on quality assurance (QA) tolerances for departments using or implementing 3D printed bolus for radiotherapy treatments. With a view to providing initial suggested QA tolerances for 3D printed bolus, this stu...
Gespeichert in:
Veröffentlicht in: | Australasian physical & engineering sciences in medicine 2021-12, Vol.44 (4), p.1187-1199 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given the existing literature on the subject, there is obviously a need for specific advice on quality assurance (QA) tolerances for departments using or implementing 3D printed bolus for radiotherapy treatments. With a view to providing initial suggested QA tolerances for 3D printed bolus, this study evaluated the dosimetric effects of changes in bolus geometry and density, for a particularly common and challenging clinical situation: specifically, volumetric modulated arc therapy (VMAT) treatment of the nose. Film-based dose verification measurements demonstrated that both the AAA and the AXB algorithms used by the Varian Eclipse treatment planning system (Varian Medical Systems, Palo Alto, USA) were capable of providing sufficiently accurate dose calculations to allow this planning system to be used to evaluate the effects of bolus errors on dose distributions from VMAT treatments of the nose. Thereafter, the AAA and AXB algorithms were used to calculate the dosimetric effects of applying a range of simulated errors to the design of a virtual bolus, to identify QA tolerances that could be used to avoid clinically significant effects from common printing errors. Results were generally consistent, whether the treatment target was superficial and treated with counter-rotating coplanar arcs or more-penetrating and treated with noncoplanar arcs, and whether the dose was calculated using the AAA algorithm or the AXB algorithm. The results of this study suggest the following QA tolerances are advisable, when 3D printed bolus is fabricated for use in photon VMAT treatments of the nose: bolus relative electron density variation within
±
5
%
(although an action level at
±
10
%
may be permissible); bolus thickness variation within
±
1
mm (or 0.5 mm variation on opposite sides); and air gap between bolus and skin
≤
5
mm. These tolerances should be investigated for validity with respect to other treatment modalities and anatomical sites. This study provides a set of baselines for future comparisons and a useful method for identifying additional or alternative 3D printed bolus QA tolerances. |
---|---|
ISSN: | 2662-4729 0158-9938 2662-4737 1879-5447 |
DOI: | 10.1007/s13246-021-01054-7 |