Ultra pH-sensitive nanocarrier based on Fe2O3/chitosan/montmorillonite for quercetin delivery
Harmful side effects of the chemotherapeutic agent have been investigated in many recent studies. Since Fe2O3 nanoparticles have proper porosity, they are capable for loading noticeable amount of drugs and controlled release. We developed Fe2O3/chitosan/montmorillonite nanocomposite. Quercetin (QC)...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2021-11, Vol.191, p.738-745 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Harmful side effects of the chemotherapeutic agent have been investigated in many recent studies. Since Fe2O3 nanoparticles have proper porosity, they are capable for loading noticeable amount of drugs and controlled release. We developed Fe2O3/chitosan/montmorillonite nanocomposite. Quercetin (QC) nanoparticles, which have fewer side effects than chemical anti-tumor drugs, were encapsulated in the synthesized nanocarrier and were characterized by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometer (VSM), dynamic light scattering (DLS), and zeta potential. For quercetin, the encapsulation efficiency and the loading efficiency of the drug in Fe2O3-CS-MMT@QC were found to be about 94% and 57%, respectively. The release profile of QC in different mediums indicated pH-dependency and controlled release of the nanocomposite, adhering to The Weibull kinetic model. Biocompatibility of the Fe2O3/CS/MMT nanoparticles against the MCF-7 cells was shown by MTT assay and confirmed by flow cytometry. These data demonstrate that the designed Fe2O3-CS-MMT@QC would have potential drug delivery to treat cancer cells. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2021.09.023 |