Multireference Perturbation Theory Combined with PCM and RISM Solvation Models: A Benchmark Study for Chemical Energetics
The polarizable continuum model (PCM) has been one of the most widely used approaches to take into account the solvation effect in quantum chemical calculations. In this paper, we performed a series of benchmark calculations to assess the accuracy of the PCM scheme combined with the second-order com...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2021-09, Vol.125 (37), p.8324-8336 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The polarizable continuum model (PCM) has been one of the most widely used approaches to take into account the solvation effect in quantum chemical calculations. In this paper, we performed a series of benchmark calculations to assess the accuracy of the PCM scheme combined with the second-order complete-active-space perturbation theory (CASPT2) for molecular systems in polar solvents. For solute molecules with extensive conjugated π orbitals, exemplified by elongated conjugated arylcarbenes, we have incorporated the ab initio density matrix renormalization group algorithm into the PCM-CASPT2 method. In the previous work, we presented a combination of the DMRG-CASPT2 method with the reference interaction site model (RISM) theory for describing the solvation effect using the radial distribution function and compared its performance to the widely used density-functional approaches (PCM-TD-DFT). The work here allows us to further show a more thorough assessment of the RISM model compared to the PCM with an equal level of the wave function treatment, the (DMRG-)CASPT2 theory, toward a high-accuracy electronic structure calculations for solvated chemical systems. With the exception that the PCM models are not capable of properly describing the hydrogen bondings, accuracy of the PCM-CASPT2 model is in most cases quite comparable to the RISM counterpart. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.1c05944 |