Effectiveness of cascading time series models based on meteorological factors in improving health risk prediction

Meteorological factors, which are periodic and regular in a long run, have an unignorable impact on human health. Accurate health risk prediction based on meteorological factors is essential for optimal allocation of resource in healthcare units. However, due to the non-stationary and non-linear nat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2022-02, Vol.29 (7), p.9944-9956
Hauptverfasser: Jia, Shuopeng, She, Weibin, Pi, Zhipeng, Niu, Buying, Zhang, Jinhua, Lin, Xihan, Xu, Mingjun, She, Weiya, Liao, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Meteorological factors, which are periodic and regular in a long run, have an unignorable impact on human health. Accurate health risk prediction based on meteorological factors is essential for optimal allocation of resource in healthcare units. However, due to the non-stationary and non-linear nature of the original hospitalization sequence, traditional methods are less robust in predicting it. This study aims to investigate hospital admission prediction models using time series pre-processing algorithms and deep learning approach based on meteorological factors. Using the electronic medical record data from Panyu Central Hospital and meteorological data of Panyu district from 2003 to 2019, 46,089 eligible patients with lower respiratory tract infections (LRTIs) and four meteorological factors were identified to build and evaluate the prediction models. A novel hybrid model, Cascade GAM-CEEMDAN-LSTM Model (CGCLM), was established in combination with generalized additive model (GAM), complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and long-short term memory (LSTM) networks for predicting daily admissions of patients with LRTIs. The experimental results show that CGCLM multistep method proposed in this paper outperforms single LSTM model in the prediction of health risk time series at different time window sizes. Moreover, our results also indicate that CGCLM has the best prediction performance when the time window is set to 61 days ( RMSE = 1.12, MAE = 0.87, R 2 = 0.93). Adequate extraction of exposure-response relationships between meteorological factors and diseases and suitable handling of sequence pre-processing have an important role in time series prediction. This hybrid climate-based model for predicting LRTIs disease can also be extended to time series prediction of other epidemic disease.
ISSN:0944-1344
1614-7499
1614-7499
DOI:10.1007/s11356-021-16372-2