Chemical analysis of the human brain by imaging mass spectrometry

Analysis of the chemical makeup of the brain enables a deeper understanding of several neurological processes. Molecular imaging that deciphers the spatial distribution of neurochemicals with high specificity and sensitivity is an exciting avenue in this aspect. The past two decades have witnessed a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analyst (London) 2021-09, Vol.146 (18), p.5451-5473
Hauptverfasser: Ajith, Akhila, Sthanikam, Yeswanth, Banerjee, Shibdas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Analysis of the chemical makeup of the brain enables a deeper understanding of several neurological processes. Molecular imaging that deciphers the spatial distribution of neurochemicals with high specificity and sensitivity is an exciting avenue in this aspect. The past two decades have witnessed a significant surge of mass spectrometry imaging (MSI) that can simultaneously map the distribution of hundreds to thousands of biomolecules in the tissue specimen at a fairly high resolution, which is otherwise beyond the scope of other molecular imaging techniques. In this review, we have documented the evolution of MSI technologies in imaging the anatomical distribution of neurochemicals in the human brain in the context of several neuro diseases. This review also addresses the potential of MSI to be a next-generation molecular imaging technique with its promising applications in neuropathology. Imaging mass spectrometry enables visualization of the neuroanatomical distribution of thousands of biochemicals in the human brain, providing a wealth of information for diagnostic, prognostic, and therapeutic developments for neuro diseases.
ISSN:0003-2654
1364-5528
DOI:10.1039/d1an01109j