Cell cycle control in cancer

Cancer is a group of diseases in which cells divide continuously and excessively. Cell division is tightly regulated by multiple evolutionarily conserved cell cycle control mechanisms, to ensure the production of two genetically identical cells. Cell cycle checkpoints operate as DNA surveillance mec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature reviews. Molecular cell biology 2022-01, Vol.23 (1), p.74-88
Hauptverfasser: Matthews, Helen K., Bertoli, Cosetta, de Bruin, Robertus A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cancer is a group of diseases in which cells divide continuously and excessively. Cell division is tightly regulated by multiple evolutionarily conserved cell cycle control mechanisms, to ensure the production of two genetically identical cells. Cell cycle checkpoints operate as DNA surveillance mechanisms that prevent the accumulation and propagation of genetic errors during cell division. Checkpoints can delay cell cycle progression or, in response to irreparable DNA damage, induce cell cycle exit or cell death. Cancer-associated mutations that perturb cell cycle control allow continuous cell division chiefly by compromising the ability of cells to exit the cell cycle. Continuous rounds of division, however, create increased reliance on other cell cycle control mechanisms to prevent catastrophic levels of damage and maintain cell viability. New detailed insights into cell cycle control mechanisms and their role in cancer reveal how these dependencies can be best exploited in cancer treatment. This Review discusses our current understanding of cell cycle regulation, the functions of cell cycle checkpoints and how disruption of these finely tuned mechanisms is associated with cancer. Insights into these regulatory mechanisms are creating new opportunities for the treatment of cancer.
ISSN:1471-0072
1471-0080
DOI:10.1038/s41580-021-00404-3