Optimization of scanning time of 18F-FDG whole body PET/CT imaging in obese patients using quadratic dose protocol

INTRODUCTION18F-FDG imaging of overweight and obese patients is often challenging due to higher scattering and attenuation. Degradation of positron emission tomography (PET) image quality as the body weight increases is best overcome by using the quadratic dose protocol. Previously the implementatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical journal of Malaysia 2021-09, Vol.76 (5), p.637-642
Hauptverfasser: Musarudin, M, Badrul Fikli, N H, Zulkaffli, N F, Rashid Jusoh, A, Said, M A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:INTRODUCTION18F-FDG imaging of overweight and obese patients is often challenging due to higher scattering and attenuation. Degradation of positron emission tomography (PET) image quality as the body weight increases is best overcome by using the quadratic dose protocol. Previously the implementation of this protocol on a Bismuth Germanium Oxide (BGO) scintillation crystal-based PET/CT system at Institut Kanser Negara (IKN), Malaysia practices using the linear dose protocol (Tmin=2.5 minutes). Hence, this study aims to optimize the Tmin of the quadratic dose protocol for 18F-FDG PET/CT. MATERIALS AND METHODSThis study was conducted based on the guideline published by the European Association of Nuclear Medicine (EANM) version 2.0 FDG-PET/CT and conducted in two phases. Firstly, 100 whole-body scan 18FFDG PET/CT images were selected for the average coefficient of variation (COV) analysis in the liver region. Second, a NEMA 2012/IEC2008 phantom was used to obtain the relationship between the COVphantom and the scanning time. Finally, the images acquired using the two Tmin were quantitatively compared using contrast recovery coefficient (QH), signal to noise ratio (SNR), and visibility (VH). Independent t-test between each image quality parameter performed with p-value
ISSN:0300-5283