Coarse-to-Fine(r) Automatic Familiar Face Recognition in the Human Brain

Abstract At what level of spatial resolution can the human brain recognize a familiar face in a crowd of strangers? Does it depend on whether one approaches or rather moves back from the crowd? To answer these questions, 16 observers viewed different unsegmented images of unfamiliar faces alternatin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2022-04, Vol.32 (8), p.1560-1573
Hauptverfasser: Yan, Xiaoqian, Goffaux, Valérie, Rossion, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract At what level of spatial resolution can the human brain recognize a familiar face in a crowd of strangers? Does it depend on whether one approaches or rather moves back from the crowd? To answer these questions, 16 observers viewed different unsegmented images of unfamiliar faces alternating at 6 Hz, with spatial frequency (SF) content progressively increasing (i.e., coarse-to-fine) or decreasing (fine-to-coarse) in different sequences. Variable natural images of celebrity faces every sixth stimulus generated an objective neural index of single-glanced automatic familiar face recognition (FFR) at 1 Hz in participants’ electroencephalogram (EEG). For blurry images increasing in spatial resolution, the neural FFR response over occipitotemporal regions emerged abruptly with additional cues at about 6.3–8.7 cycles/head width, immediately reaching amplitude saturation. When the same images progressively decreased in resolution, the FFR response disappeared already below 12 cycles/head width, thus providing no support for a predictive coding hypothesis. Overall, these observations indicate that rapid automatic recognition of heterogenous natural views of familiar faces is achieved from coarser visual inputs than generally thought, and support a coarse-to-fine FFR dynamics in the human brain.
ISSN:1047-3211
1460-2199
DOI:10.1093/cercor/bhab238