N-doped graphitic C3N4 nanosheets decorated with CoP nanoparticles: A highly efficient activator in singlet oxygen dominated visible-light-driven peroxymonosulfate activation for degradation of pharmaceuticals and personal care products

CoP nanoparticle-loaded N-doped graphitic C3N4 nanosheets (CoP/N-g-C3N4) were fabricated via a facile three-step method to degrade pharmaceuticals and personal care products (PPCPs) via a visible-light-driven (VLD) peroxymonosulfate (PMS) activation system. 2 ppm carbamazepine (CBZ) can be removed c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2021-08, Vol.416, p.125891-125891, Article 125891
Hauptverfasser: Dong, Chencheng, Zheng, Zexiao, Wang, Zhiqiang, He, Juhua, Ye, Zhichao, Gong, Xueqing, Lo, Irene M.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CoP nanoparticle-loaded N-doped graphitic C3N4 nanosheets (CoP/N-g-C3N4) were fabricated via a facile three-step method to degrade pharmaceuticals and personal care products (PPCPs) via a visible-light-driven (VLD) peroxymonosulfate (PMS) activation system. 2 ppm carbamazepine (CBZ) can be removed completely within 10 min by the VLD-PMS system with a kinetic constant of k = 0.29128 min−1, as 25.8 times compared to that under dark conditions (k = 0.01128 min−1). The experimental and theoretical results showed that the doped graphitic N atoms could modulate the electronic properties of the g-C3N4 nanosheets. Subsequently, the Density Functional Theory (DFT) explained that CoP showed preference to bonding with the nitrogen atoms involved in the newly formed N˭N bond, and the Co‒N bond dramatically enhanced the transfer of photo-generated electrons from the N-g-C3N4 nanosheets. Electron paramagnetic resonance (EPR) tests show that singlet oxygen (1O2) plays a leading role in this case. Moreover, PMS molecules are also tended to be absorbed onto the electron-deficient carbon atoms near the newly formed N˭N bonds for PMS reduction, synergistically enhancing the degradation efficiency for CBZ and benzophenone-3 (BZP). The newly established VLD-PMS activation system was shown to treat the actual sewage in Hong Kong sewage treatment plants (STPs) very well. This work supplements the fundamental theory of radical and non-radical pathways in the sulfate radical (SO4•-)-based advanced oxidation process (SR-AOP) for environmental cleanup purposes. [Display omitted] •Graphitic N atoms doping modulates the electronic properties of g-C3N4 nanosheets.•1O2 is the predominant ROS over the CoP/N-g-C3N4 nanosheets.•The electrons transferring via Co‒N bond dramatically promote the degradation.•CoP/N-g-C3N4 show convincible potential for the purification of actual sewage.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2021.125891