Cell wall modification induced by an arbuscular mycorrhizal fungus enhanced cadmium fixation in rice root

The chemistry of root cell wall of rice could be changed by inoculation of arbuscular mycorrhizal fungi (AMF). Hydroponic experiments were conducted to investigate the roles of such changes on cadmium (Cd) uptake and distribution in rice. Results showed that inoculation of AM fungus Rhizophagus intr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2021-08, Vol.416, p.125894-125894, Article 125894
Hauptverfasser: Gao, Meng Ying, Chen, Xun Wen, Huang, Wei Xiong, Wu, Li, Yu, Zheng Sheng, Xiang, Lei, Mo, Ce Hui, Li, Yan Wen, Cai, Quan Ying, Wong, Ming Hung, Li, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The chemistry of root cell wall of rice could be changed by inoculation of arbuscular mycorrhizal fungi (AMF). Hydroponic experiments were conducted to investigate the roles of such changes on cadmium (Cd) uptake and distribution in rice. Results showed that inoculation of AM fungus Rhizophagus intraradices (RI) significantly enhanced (p < 0.05) shoot biomass, plant height and root length of rice, and decreased Cd concentration in shoot and root under Cd stress. Moreover, Cd in root was mainly found in pectin and hemicellulose 1 (HC1) components of root cell wall. Inoculation of RI increased the levels of pectin, HC1 and lignin content, accompanied by the increments of L-phenylalanine ammonia-lyase (PAL) and pectin methylesterase (PME) activities. Results of Fourier transform infrared spectroscopy further showed that more hydroxyl and carboxyl groups in root cell wall were observed in mycorrhizal treatment, compared with control. This study demonstrates that cell wall components could be the locations for Cd fixation, which reduced Cd transportation from root to shoot. Inoculation of AMF may remodel root cell wall biosynthesis and affect the characteristics of Cd fixation. The entering and fixing mechanisms should be further studied. [Display omitted] •AMF enhanced shoot biomass, plant height and root length of rice.•AMF decreased Cd concentration in root and shoot.•Cd in root was mainly associated with pectin and hemicellulose 1.•AMF altered characteristics of cell wall matrix and enhanced Cd fixation.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2021.125894