Electrochemical synthesis of annealing-free and highly stable black-phase CsPbI3 perovskite
All-inorganic CsPbI3 halide perovskite has become a hot research topic for applications in next-generation optoelectronic devices. However, the main limitations are the high-temperature synthesis and poor phase stability. In this study, we demonstrate a unique solution-phase strategy for the low-tem...
Gespeichert in:
Veröffentlicht in: | Chemical communications (Cambridge, England) England), 2021-09, Vol.57 (71), p.8981-8984 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | All-inorganic CsPbI3 halide perovskite has become a hot research topic for applications in next-generation optoelectronic devices. However, the main limitations are the high-temperature synthesis and poor phase stability. In this study, we demonstrate a unique solution-phase strategy for the low-temperature preparation of black-phase CsPbI3 by in situ electrochemistry. By controllable adjustment of the electrochemical growth process, annealing-free black-phase CsPbI3 can be synthesized. The black-phase CsPbI3 showed high-purity red photoluminescence at approximately 690 nm with ultra-high environmental stability for up to 11 days at a high relative humidity of 70%. The underlying mechanisms of the formation of the highly stable black-phase CsPbI3 at room temperature have been discussed in this study. The results provide a new platform for the large scale, low-temperature, and convenient synthesis of black-phase CsPbI3 perovskite. |
---|---|
ISSN: | 1359-7345 1364-548X |
DOI: | 10.1039/d1cc03661k |