Gene expression with corresponding pathways analysis in Gaucher disease

Gaucher disease (GD) caused by mutation in the GBA gene has a wide spectrum of phenotypes. Besides the storage disorder, secondary alteration of various pathways occurs with modification of the expression of many genes. In our work we analysed the expression profile of genes in adult patients with t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental and molecular pathology 2021-12, Vol.123, p.104679-104679, Article 104679
Hauptverfasser: Pawliński, Łukasz, Polus, Anna, Kałużna, Małgorzata, Sordyl, Maria, Tobór-Świętek, Ewa, Krawczyk, Magdalena, Bednarek, Marcin, Solnica, Bogdan, Ruchała, Marek, Kieć-Wilk, Beata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gaucher disease (GD) caused by mutation in the GBA gene has a wide spectrum of phenotypes. Besides the storage disorder, secondary alteration of various pathways occurs with modification of the expression of many genes. In our work we analysed the expression profile of genes in adult patients with type 1 GD. This study was an observational, cross-sectional analysis of a group of twenty patients with type 1 GD and ten healthy volunteers as a control group. First, on the group of ten persons, microarray gene analysis was performed. Afterwards, significantly regulated genes were selected, and the microarray results were confirmed by real-time PCR on the whole study group. Based on the microarray results in the pathway analysis, we focused on genes related to chemokines, inflammatory processes, endocytosis, autophagy, and apoptosis. Patients with GD demonstrated up-regulation of genes related to NFkB pathway (NFkB, NKkBR SQSTM1), inflammation (IL-1b), endocytosis and autophagy (BCN1, SMAD), genes coding proteins involved in apoptosis (CASP, NFkB, BCL2) as well as genes related to proteasome degradation (PSMD2, PSMB9) and SNARE complex (SNAP, STX). Simultaneously, we showed down-regulation of genes coding proteins of chemokines and their receptors (GNB4, CCL5). The qRT–PCR results confirmed changes in expression of selected genes. Parallel microarray results showed inhibition of genes related to neurones development and survival (NTRK1) and stimulation of gene expression related to neurodegeneration and apoptosis (BCN1, IL1B). The work revealed different pathway activation, especially inflammatory processes followed by autophagy and apoptosis. Our results also pay attention to new pathways leading to disorders of the functioning of the nervous tissue in patients with type 1 GD, which may lead to the development of polyneuropathy and chronic pain. These are clinical symptoms that severely decrease the quality of life in GD patients.
ISSN:0014-4800
1096-0945
DOI:10.1016/j.yexmp.2021.104679