Distributed Bayesian Inference Over Sensor Networks

In this article, two novel distributed variational Bayesian (VB) algorithms for a general class of conjugate-exponential models are proposed over synchronous and asynchronous sensor networks. First, we design a penalty-based distributed VB (PB-DVB) algorithm for synchronous networks, where a penalty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2023-03, Vol.53 (3), p.1587-1597
Hauptverfasser: Ye, Baijia, Qin, Jiahu, Fu, Weiming, Zhu, Yingda, Wang, Yaonan, Kang, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, two novel distributed variational Bayesian (VB) algorithms for a general class of conjugate-exponential models are proposed over synchronous and asynchronous sensor networks. First, we design a penalty-based distributed VB (PB-DVB) algorithm for synchronous networks, where a penalty function based on the Kullback-Leibler (KL) divergence is introduced to penalize the difference of posterior distributions between nodes. Then, a token-passing-based distributed VB (TPB-DVB) algorithm is developed for asynchronous networks by borrowing the token-passing approach and the stochastic variational inference. Finally, applications of the proposed algorithm on the Gaussian mixture model (GMM) are exhibited. Simulation results show that the PB-DVB algorithm has good performance in the aspects of estimation/inference ability, robustness against initialization, and convergence speed, and the TPB-DVB algorithm is superior to existing token-passing-based distributed clustering algorithms.
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2021.3106660