Ultrathin Stretchable Triboelectric Nanogenerators Improved by Postcharging Electrode Material

Sustainable ultrathin stretchable power sources have emerged with the development of wearable electronics. They obtain energy from living organisms and the environment to drive these wearable electronics. Here, an ultrathin stretchable and triboelectric nanogenerator (TENG) improved by chargeable ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-09, Vol.13 (36), p.42966-42976
Hauptverfasser: Zhang, Weiyi, Liu, Qiang, Chao, Shengyu, Liu, Ruping, Cui, Xi, Sun, Yu, Ouyang, Han, Li, Zhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sustainable ultrathin stretchable power sources have emerged with the development of wearable electronics. They obtain energy from living organisms and the environment to drive these wearable electronics. Here, an ultrathin stretchable and triboelectric nanogenerator (TENG) improved by chargeable carbon black (CB)/thermoplastic polyurethane (TPU) composite material (CT-TENG) is proposed for mechanical energy harvesting and physiological signal sensing. The CB/TPU composite can act as both a stretchable electrode and a triboelectric layer due to the coexistence of conductive CB and dielectric TPU. The CT-TENG demonstrates good stretchability (≈646%), ultrathin thickness (≈50 μm), and a lightweight (≈62 mg). The triboelectric electrode material can be improved by postcharging treatment. With the corona charging process, the output performance of the CT-TENG was improved eightfold and reached 41 V. Moreover, the CT-TENG with a self-powered sensing capability can inspect the amplitude and frequency of different physiological movements. Consequently, the CT-TENG is promising in promoting the development of electronic skins, wearable systems of self-powered sensors, human–machine interactions, soft robotics, and artificial intelligence applications.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c13840