Magnetic Doping Induced Superconductivity-to-Incommensurate Density Waves Transition in a 2D Ultrathin Cr-Doped Mo2C Crystal
In the vicinity of a competing electronic order, superconductivity emerges within a superconducting dome in the phase diagram, which has been demonstrated in unconventional superconductors and transition-metal dichalcogenides (TMDs), suggesting a scenario where fluctuations or a partial melting of a...
Gespeichert in:
Veröffentlicht in: | ACS nano 2021-09, Vol.15 (9), p.14938-14946 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the vicinity of a competing electronic order, superconductivity emerges within a superconducting dome in the phase diagram, which has been demonstrated in unconventional superconductors and transition-metal dichalcogenides (TMDs), suggesting a scenario where fluctuations or a partial melting of a parent order are essential for inducing superconductivity. Here, we present a contrary example, the two-dimensional (2D) superconductivity in transition-metal carbide can be readily turned into charge density wave (CDW) phases via dilute magnetic doping. Low temperature scanning tunneling microscopy/spectroscopy (STM/STS), transport measurements, and density functional theory (DFT) calculations were employed to investigate Cr-doped superconducting Mo2C crystals in the 2D limit. With ultralow Cr doping (2.7 atom %), the superconductivity of Mo2C is heavily suppressed. Strikingly, an incommensurate density wave (IDW) and a related partially opened gap are observed at a temperature above the superconducting regime. The wave vector of IDW agrees well with the calculated Fermi surface nesting vectors. By further increasing the Cr doping level to 9.4 atom %, a stronger IDW with a smaller periodicity and a larger partial gap appear concurrently. The resistance anomaly implies the onset of the CDW phase. Spatial-resolved and temperature-dependent spectroscopy reveals that such CDW phases exist only in a nonsuperconducting regime and could form long-range orders uniformly. The results provide the understanding for the interplay between charge ordered states and superconductivity in 2D transition-metal carbide. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.1c05133 |