Reactions of 9‑Carbene-9-Borafluorene Monoanion and Selenium: Synthesis of Boryl-Substituted Selenides and Diselenides
Reactions of 9-carbene-9-borafluorene monoanion (1) with elemental selenium and selenium-containing reagents are reported. When compound 1 is reacted with grey selenium in THF, various boryl-substituted selenides and diselenides are produced (2–6), including molecules resulting from migration of the...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2021-09, Vol.60 (18), p.13941-13949 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reactions of 9-carbene-9-borafluorene monoanion (1) with elemental selenium and selenium-containing reagents are reported. When compound 1 is reacted with grey selenium in THF, various boryl-substituted selenides and diselenides are produced (2–6), including molecules resulting from migration of the carbene ligand Dipp group (Dipp = 2,6-diisopropylphenyl). However, when a similar reaction between 1 and grey selenium is performed in toluene in the presence of 18-crown-6, boryl-substituted selenide 7 is obtained as the sole boron-containing product. As compound 7 is the monomeric variant of organoselenide 3, 18-crown-6 promotes both product selectivity and solubility in a nonpolar solvent. Diselenide 5, which features a trans-bent B–Se–Se–B core, was directly isolated via reaction of 1 with Se2Cl2 in THF. Computational modeling suggests that the formation of 5 proceeds via a radical mechanism. This was supported by an experiment demonstrating that the CAAC-borafluorene radical also reacts with SeCl2 to yield 5 [CAAC = (2,6-diisopropylphenyl)-4,4-diethyl-2,2-dimethyl-pyrrolidin-5-ylidene]. Energy decomposition analysis of 5 indicates a covalent borafluorene–diselenide bond (ΔE int, −168.9 kcal mol–1). All of the new compounds were fully characterized via single-crystal X-ray diffraction and multinuclear nuclear magnetic resonance (1H, 13C, 11B, and 77Se). |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.1c02124 |