Structure evolution and energy storage mechanism of Zn3V3O8 spinel in aqueous zinc batteries

Spinel-type materials are promising for the cathodes in rechargeable aqueous zinc batteries. Herein, Zn3V3O8 is synthesized via a simple solid-state reaction method. By tuning the Zn(CF3SO3)(2) concentration in electrolytes and the cell voltage ranges, improved electrochemical performance of Zn3V3O8...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2021-01, Vol.13 (34), p.14408-14416
Hauptverfasser: Yi, Haocong, Zuo, Changjian, Ren, Hengyu, Zhao, Wenguang, Wang, Yuetao, Ding, Shouxiang, Li, Yang, Qin, Runzhi, Zhou, Lin, Yao, Lu, Li, Shunning, Zhao, Qinghe, Pan, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spinel-type materials are promising for the cathodes in rechargeable aqueous zinc batteries. Herein, Zn3V3O8 is synthesized via a simple solid-state reaction method. By tuning the Zn(CF3SO3)(2) concentration in electrolytes and the cell voltage ranges, improved electrochemical performance of Zn3V3O8 can be achieved. The optimized test conditions give rise to progressive structure evolution from bulk to nano-crystalline spinel, which leads to capacity activation in the first few cycles and stable cycling performance afterward. Furthermore, the energy storage mechanism in this nano-crystalline spinel is interpreted as the co-intercalation of zinc ions and protons with some water. This work provides a new viewpoint of the structure evolution and correlated energy storage mechanism in spinel-type host materials, which would benefit the design and development of next-generation batteries.
ISSN:2040-3364
2040-3372
DOI:10.1039/d1nr02347k