Carbon nanotube enhanced membrane distillation for salty and dyeing wastewater treatment by electrospinning technology

Membrane distillation (MD) is considered as a promising and attractive technology due to its effective production of fresh water. However, the low permeability and easy wetting of MD membranes limit its practical applications. Herein carbon nanotubes (CNTs) and polyvinylidene fluoride-co-hexafluorop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research 2022-03, Vol.204 (Pt A), p.111892-111892, Article 111892
Hauptverfasser: Song, Jialing, Deng, Qian, Huang, Manhong, Kong, Zhuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Membrane distillation (MD) is considered as a promising and attractive technology due to its effective production of fresh water. However, the low permeability and easy wetting of MD membranes limit its practical applications. Herein carbon nanotubes (CNTs) and polyvinylidene fluoride-co-hexafluoropropylene (PcH) were used to fabricate nanofiber membranes by electrospinning. Effects of heat-press temperature and CNTs concentration on the morphology and performance of the as-fabricated membranes were systematically investigated. Dye rejections of CNTs/PcH membranes were also studied and role of CNTs played in the as-prepared MD membranes were analyzed. Results suggest that heat-press treatment effectively improved the mechanical strength as well as liquid entry pressure of membranes, and the optimal heat-press temperature was 150 °C. CNTs were proved to be successfully blended in nanofibers. Hydrophobicity and mechanical strength of membranes increased with CNTs incorporation. The 0.5 wt % CNTs loaded membrane heat-pressed at 150 °C exhibited the highest permeate flux (16.5–18.5 L m−2 h−1), which signified an increase of 42–50 % compared to the commercial MD membrane (11–13 L m−2 h−1) when 35 and 70 g L−1 NaCl solutions were used as feed solutions, respectively. It was noteworthy that salt rejection efficiencies of tested membranes achieved more than 99.99 %. When CNTs/PcH nanofiber membrane was applied to the treatment of dyeing wastewater, the removal rates of acid red and acid yellow reached 100 %. The removal rates of methylene blue and crystal violet were 99.41 % and 99.91 %, respectively. The present study suggested that the as-prepared membranes showed high potential towards MD application. •Addition of CNTs enhanced the contact angle from 135.9 to 143.3.•Heat-pressing can effectively improve the mechanical strength and LEP.•The as-fabricated membrane increased >42 % flux compared to the commercial membrane.•CNTs/PcH nanofiber membrane can maintain long-term stable operation.
ISSN:0013-9351
1096-0953
DOI:10.1016/j.envres.2021.111892