Knowledge-based interpretation of sensor patterns

In this paper we define knowledge-based interpretation of sensor patterns as the Qualitative Interpretation ( QI) problem. In our definition, QI corresponds to the generation of useful symbolic abstractions from numeric plant sensor data. The lack of robust QI capability represents a key bottleneck...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering 1992, Vol.16 (4), p.329-346
Hauptverfasser: Whiteley, J.R., Davis, J.F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we define knowledge-based interpretation of sensor patterns as the Qualitative Interpretation ( QI) problem. In our definition, QI corresponds to the generation of useful symbolic abstractions from numeric plant sensor data. The lack of robust QI capability represents a key bottleneck in the widespread application of knowledge-based system (KBS) technology within the chemical process industries (CPI). We characterize QI as an adaptive pattern recognition task which can be addressed in a supervised manner. Consequently, the potential utility of the back-propagation network (BPN) is examined. Representational adequacy is identified as the controlling issue. A process example illustrates the use of BPN for QI.
ISSN:0098-1354
1873-4375
DOI:10.1016/0098-1354(92)80052-B