Electroencephalogram feature extraction and classification of autistic children based on recurrence quantification analysis

Extraction and analysis of electroencephalogram (EEG) signal characteristics of patients with autism spectrum disorder (ASD) is of great significance for the diagnosis and treatment of the disease. Based on recurrence quantitative analysis (RQA)method, this study explored the differences in the nonl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sheng wu yi xue gong cheng xue za zhi 2021-08, Vol.38 (4), p.663-670
Hauptverfasser: Zhao, Jie, Zhang, Zhiming, Wan, Lingyan, Li, Xiaoli, Kang, Jiannan
Format: Artikel
Sprache:chi
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extraction and analysis of electroencephalogram (EEG) signal characteristics of patients with autism spectrum disorder (ASD) is of great significance for the diagnosis and treatment of the disease. Based on recurrence quantitative analysis (RQA)method, this study explored the differences in the nonlinear characteristics of EEG signals between ASD children and children with typical development (TD). In the experiment, RQA method was used to extract nonlinear features such as recurrence rate (RR), determinism (DET) and length of average diagonal line (LADL) of EEG signals in different brain regions of subjects, and support vector machine was combined to classify children with ASD and TD. The research results show that for the whole brain area (including parietal lobe, frontal lobe, occipital lobe and temporal lobe), when the three feature combinations of RR, DET and LADL are selected, the maximum classification accuracy rate is 84%, the sensitivity is 76%, the specificity is 92%, and the corresponding area unde
ISSN:1001-5515
DOI:10.7507/1001-5515.202010082