Identification and Functional Validation of Differentially Expressed microRNAs in Ascites-Derived Ovarian Cancer Cells Compared with Primary Tumour Tissue

Purpose: Ovarian cancer, manifested by malignant ascites, is the most lethal gynaecological cancer. Suspended ascites-derived spheroids may contribute to ovarian cancer metastasis. MicroRNAs (miRNAs) are also associated with ovarian cancer metastasis. Here, we aimed to investigate the differentially...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer management and research 2021-01, Vol.13, p.6585-6597
Hauptverfasser: Jiang, Yahui, Shi, Yiwen, Lyu, Tianjiao, Liu, Hua, Shen, Lifei, Zhou, Tianyu, Feng, Weiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: Ovarian cancer, manifested by malignant ascites, is the most lethal gynaecological cancer. Suspended ascites-derived spheroids may contribute to ovarian cancer metastasis. MicroRNAs (miRNAs) are also associated with ovarian cancer metastasis. Here, we aimed to investigate the differentially expressed miRNAs (DE-miRNAs) in ascites-derived spheroids compared with primary tumour tissues, which may regulate ovarian cancer metastasis. Methods: The DE-miRNAs between ovarian cancer primary tumour tissues and ascites-derived spheroids were identified by GEO2R screening in samples from 3 high-grade serous ovarian cancer (HGSOC) patients of dataset GSE65819. We used MiRTarBase, TargetScanHuman7.2 and STRING to predict the target hub genes of DE-miRNAs and DAVID to perform functional analysis of hub genes. ALGGEN PROMO and TransmiR v2.0 were used to predict transcription factors (TFs) that potentially regulate DE-miRNAs expression. The observed differences in DEmiRNAs expression were validated with samples from 12 HGSOC patients and 2 ovarian cancer cell lines using PCR. The functions of DE-miRNAs on ovarian cancer progression were verified by invasion, adherent, and angiogenesis assays. Results: Through bioinformatics screening and experimental validation, miR-199a-3p, miR199b-3p, miR-199a-5p, miR-126-3p and miR-145-5p were identified as being significantly downregulated in ascites-derived spheroids compared with primary tumour tissues. In addition, TFAP2A was identified as a potentially common upstream TF regulating the expression of the above mentioned DE-miRNAs. The overexpression of miR-199a-3p, miR-199b-3p, miR-199a-5p lead to invasion inhibition, and the overexpression of miR-126-3p, miR-1455p, miR-199a-5p and miR-199b-3p lead to adhesion inhibition of suspended ovarian cancer cells. High-expressed miR-126-3p, miR-199a-3p, miR-199a-5p and miR-199b-3p contributed to apoptosis of suspended ovarian cancer cells Conclusion: The downregulated expression of miR-199a-3p, miR-199b-3p, miR-199a-5p, miR126-3p and miR-145-5p in ascites-derived spheroids plays a key role in promoting ovarian cancer progression, which may represent novel molecules for targeted therapy for ovarian cancer.
ISSN:1179-1322
1179-1322
DOI:10.2147/CMAR.S320834