Thermostability of a trivalent, capsomere-based vaccine for human papillomavirus infection

[Display omitted] Currently licensed vaccines require a cold-chain to maintain efficacy. This cold-chain requirement reduces the availability of vaccines in resource-poor areas of the world. Commercially available human papillomavirus (HPV) vaccines protect against the most common HPV types related...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmaceutics and biopharmaceutics 2021-11, Vol.168, p.131-138
Hauptverfasser: Dong, Miao, Meinerz, Natalie M., Walker, Kathryne D., Garcea, Robert L., Randolph, Theodore W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Currently licensed vaccines require a cold-chain to maintain efficacy. This cold-chain requirement reduces the availability of vaccines in resource-poor areas of the world. Commercially available human papillomavirus (HPV) vaccines protect against the most common HPV types related to cervical cancer; however, their impact is limited in many regions due to cold-chain requirements. The goal of this study was to test the thermostability of an adjuvanted, trivalent HPV L1 capsomere-based vaccine (containing HPV types 16, 18, and 31) that was formulated by using lyophilization to embed the antigens within a solid, glassy matrix. Thermal stabilities were determined by storing the vaccine formulations for 3 months at 50 °C, followed by immunization of BALB/c mice and measurement of antibody responses. Antibody responses to capsomere vaccines formulated with alum were unchanged after storage for 3 months at 50 °C. Neutralizing responses to these vaccines were unchanged by high-temperature storage, and were equivalent to those generated after administration of the commercially available liquid HPV vaccine Gardasil®9.
ISSN:0939-6411
1873-3441
DOI:10.1016/j.ejpb.2021.08.008