Adaptive NN Optimal Consensus Fault-Tolerant Control for Stochastic Nonlinear Multiagent Systems
This article investigates the problem of adaptive neural network (NN) optimal consensus tracking control for nonlinear multiagent systems (MASs) with stochastic disturbances and actuator bias faults. In control design, NN is adopted to approximate the unknown nonlinear dynamic, and a state identifie...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2023-02, Vol.34 (2), p.947-957 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article investigates the problem of adaptive neural network (NN) optimal consensus tracking control for nonlinear multiagent systems (MASs) with stochastic disturbances and actuator bias faults. In control design, NN is adopted to approximate the unknown nonlinear dynamic, and a state identifier is constructed. The fault estimator is designed to solve the problem raised by time-varying actuator bias fault. By utilizing adaptive dynamic programming (ADP) in identifier-critic-actor construction, an adaptive NN optimal consensus fault-tolerant control algorithm is presented. It is proven that all signals of the controlled system are uniformly ultimately bounded (UUB) in probability, and all states of the follower agents can remain consensus with the leader's state. Finally, simulation results are given to illustrate the effectiveness of the developed optimal consensus control scheme and theorem. |
---|---|
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2021.3104839 |