Tuning Interfacial Active Sites over Porous Mo2N‑Supported Cobalt Sulfides for Efficient Hydrogen Evolution Reactions in Acid and Alkaline Electrolytes

Although various cobalt-sulfide-based materials have been reported for the hydrogen evolution reaction, only a few have achieved high activity in both acid and alkaline electrolytes due to the inherent poor conductivity and low active sites. In this work, a heterojunction of cobalt sulfide and Mo2N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-09, Vol.13 (35), p.41573-41583
Hauptverfasser: Zang, Yan, Yang, Baopeng, Li, An, Liao, Chengan, Chen, Gen, Liu, Min, Liu, Xiaohe, Ma, Renzhi, Zhang, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although various cobalt-sulfide-based materials have been reported for the hydrogen evolution reaction, only a few have achieved high activity in both acid and alkaline electrolytes due to the inherent poor conductivity and low active sites. In this work, a heterojunction of cobalt sulfide and Mo2N is designed for efficient hydrogen evolution reactions in both acid and alkaline electrolytes. X-ray photoelectron spectroscopy reveals that Mo–S bonds are formed at the interface between Mo2N and CoS2, which result in the fabricated Mo2N/CoS2 materials exhibiting a considerably enhanced hydrogen evolution reaction activity than the corresponding Mo2N, CoS2, and most reported Mo- and Co-based catalysts in electrolytes of H2SO4 and KOH solutions. Density functional theory calculations suggest that the redistribution of charges occurs at the heterointerface. In addition, the interfacial active sites possess a considerably lower hydrogen adsorption Gibbs free energy than those atoms that are far away from the interface, which is beneficial to the process of hydrogen evolution reaction. This study provides a feasible strategy for designing hetero-based electrocatalysts with a tuned highly active interface.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c10060