Visible and Near-Infrared Emission in Ba3Sc4O9:Bi Phosphor: An Investigation on Bismuth Valence Modification
Bismuth (Bi)-activated luminescence materials have attracted much attention for their tunable broad emissions ranging from a visible to near-infrared (NIR) region. However, it remains a challenge to regulate the Bi valence state and achieve NIR emission via a facile way. Here, we report the design a...
Gespeichert in:
Veröffentlicht in: | Inorganic chemistry 2021-09, Vol.60 (17), p.13510-13516 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bismuth (Bi)-activated luminescence materials have attracted much attention for their tunable broad emissions ranging from a visible to near-infrared (NIR) region. However, it remains a challenge to regulate the Bi valence state and achieve NIR emission via a facile way. Here, we report the design and preparation of Ba3Sc4O9:Bi phosphors, which emit visible and NIR emissions simultaneously even prepared in the air condition. The self-reduction mechanism of Bi3+ species in Ba3Sc4O9 with a rigid crystal structure is illustrated based on the charge compensation model, and the coexistence of different Bi-active centers, Bi3+ for visible emission, while Bi+ and Bi0 for NIR emission, is confirmed by the spectroscopic data and X-ray photoelectron spectroscopy (XPS) analysis. The enhanced NIR emission was further achieved through controlled reducing treatment and the related mechanism has also been clarified. This work paves a new way to control bismuth valence and tune the emission of Bi-based luminescence materials for emerging photonics applications. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/acs.inorgchem.1c01835 |