Danhong injection enhances the therapeutic effect of mannitol on hemispheric ischemic stroke by ameliorating blood-brain barrier disruption
Mannitol, a representative of hyperosmolar therapy, is indispensable for the treatment of malignant cerebral infarction, but its therapeutic effect is limited by its exacerbation of blood-brain barrier (BBB) disruption. This study was to explore whether Danhong injection (DHI), a standardized produc...
Gespeichert in:
Veröffentlicht in: | Biomedicine & pharmacotherapy 2021-10, Vol.142, p.112048-112048, Article 112048 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mannitol, a representative of hyperosmolar therapy, is indispensable for the treatment of malignant cerebral infarction, but its therapeutic effect is limited by its exacerbation of blood-brain barrier (BBB) disruption. This study was to explore whether Danhong injection (DHI), a standardized product extracted from Salvia miltiorrhiza Bunge and Carthamus tinctorius L., inhibits the destructive effect of mannitol on BBB and thus enhancing the treatment of hemispheric ischemic stroke. SD rats were subjected to pMCAO followed by intravenous bolus injections of mannitol with/without DHI intervention. Neurological deficit score, brain edema, infarct volume at 24 h after MCAO and histopathology, microvascular ultrastructure, immunohistochemistry and immunofluorescence staining of endothelial cell junctions, energy metabolism in the ischemic penumbra were assessed. Intravenous mannitol after MCAO resulted in a decrease in 24 h mortality and cerebral edema, whereas no significant benefit on neurological deficits, infarct volume and microvascular ultrastructure. Moreover, mannitol led to the loss of endothelial integrity, manifested by the decreased expression of occludin, junctional adhesion molecule-1 (JAM-1) and zonula occluden-1 (ZO-1) and the discontinuity of occludin staining around the periphery of endothelial cells. Meanwhile, after mannitol treatment, energy-dependent vimentin and F-actin, ATP content, and ATP5D expression were down-regulated, while MMP2 and MMP9 expression increased in the ischemic penumbra. All the insults after mannitol treatment were attenuated by addition of intravenous DHI. The results suggest DHI as a potential remedy to attenuate mannitol-related BBB disruption, and the potential of DHI to upregulate energy metabolism and inhibit the activity of MMPs is likely attributable to its effects observed.
A schematic illustration outlining the effect of mannitol and DHI on hemispheric ischemic stroke. Hemispheric cerebral ischemia induces cerebral edema and destroys the tight junctions and adhesion junctions between microvascular endothelial cells by activating MMPs and damaging the energy-metabolism-dependent cytoskeleton. Mannitol treatment can effectively reduce brain edema, however, it can promote the activation of MMPs and further impair intracellular energy metabolism, thus exacerbating the disruption of BBB continuity. DHI counteracts the adverse effect of mannitol by inhibiting the activation of MMPs and increasing the expression o |
---|---|
ISSN: | 0753-3322 1950-6007 |
DOI: | 10.1016/j.biopha.2021.112048 |